Multi-column point-CNN for sketch segmentation
نویسندگان
چکیده
منابع مشابه
A Multi-scale CNN for Affordance Segmentation in RGB Images
Given a single RGB image our goal is to label every pixel with an affordance type. By affordance, we mean an object’s capability to readily support a certain human action, without requiring precursor actions. We focus on segmenting the following five affordance types in indoor scenes: ‘walkable’, ‘sittable’, ‘lyable’, ‘reachable’, and ‘movable’. Our approach uses a deep architecture, consisting...
متن کاملSmart Scribbles for Sketch Segmentation
We present Smart Scribbles—a new scribble-based interface for user-guided segmentation of digital sketchy drawings. In contrast to previous approaches based on simple selection strategies, Smart Scribbles exploits richer geometric and temporal information, resulting in a more intuitive segmentation interface. We introduce a novel energy minimization formulation in which both geometric and tempo...
متن کاملDepth-aware CNN for RGB-D Segmentation
Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high compu...
متن کاملA Pyramid CNN for Dense-Leaves Segmentation
Automatic detection and segmentation of overlapping leaves in dense foliage can be a difficult task, particularly for leaves with strong textures and high occlusions. We present Dense-Leaves, an image dataset with ground truth segmentation labels that can be used to train and quantify algorithms for leaf segmentation in the wild. We also propose a pyramid convolutional neural network with multi...
متن کاملME R-CNN: Multi-Expert R-CNN for Object Detection
Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2020
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2019.12.117